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Calbiochent MAPK Family Pathways

Cells Compute =

- No survival without computation!
- Finding food
- Avoiding predators

- How do they compute?

. Y7 . . 74 *
- Clearly doing “information processing MAPKKK 5 MAPKKK® | sisamns 1
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- Based on complex, higher-order interactions = |
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-+ How ‘sophisticated’ are natural algorithms? T ; ‘
MAPK Pase
Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang ouTPUT




Outline

- Analyzing biomolecular networks

- Try do understand the function of a network
+ But also try to understand its structure, and what determines it

- The Cell-Cycle Switches

- Some of the best studied molecular networks

- Important because of their fundamental function (cell division)
and the stability of the network across evolution

- We ask:

- What does the cell cycles switch compute?
- How does it compute it?




The Cell Cycle Switch

This network is universal in all Eukaryotes [P Nurse]

- |L.e.,, the network at the core of cell division is the same from yeast to us
- Not the components of the network, nor the rates

s Limi e 1115

®
Numerical analysis of a comprehensive model of M-phase control in

Xenopus oocyte extracts and intact embryos

Bela Novak* and John J. Tyson?

Double positive feedback on x
Double negative feedback on x

No feedback ony
What on earth ... 777

- The function is very well-studied. But why this structure?
- l.e., why this algorithm?




How to Build a Good Switch
- What is a "good” switch?

- We need first a bistable system: one that has two distinct and stable states.
l.e., given any initial state the system must settle into one of two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

"Population” Switches

- Populations of identical agents (molecules) with the whole population
switching from one state to another as a whole

- Highly concurrent (stochastic)




A Bad Algorithm [

—
X ——y

- Direct Competition | T
- x catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Y+ XX+ X
X+ty—y+y




A Very Good Algorithm
- Approximate Majority (AM)

- Decide which of two populations is in majority

Dax

1 Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority

- A fundamental ‘population protocol’

y y
Com=C ==
X X

Third ‘undecided’ state

- Agents in a population start in state x or state y

- A pair of agents is chosen randomly at each step,
they interact (‘collide’) and change state

- The whole population must eventually agree on a
majority value (all-x or all-y) with probability 1

1)

2)

We analyze the behavior of the following population pro-
tocol with states ¢ = {b,r.y}. The state b is the blank
state. Row labels give the initiator’s state and column
labels the responder’s state.
b Y

x (x,x) (x, ) (z.B)

b (boa) (b.h) (by)

u (u.b) (y.y) (v.y)

Disagreements cause agents to
become undecided

Undecided agents believe any
non-undecided agent they meet




P rO pe rtl e S [Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]
- With high probability, for n agents

- The total number of interactions before converging is O(n log n)
— fast

- The final outcome is correct if the initial disparity is w(sqgrt(n) log n)
— solution states are robust to perturbations

- Logarithmic time bound in parallel time

- Parallel time is the number of steps divided by the number of agents
- In parallel time the algorithm converges with high probability in O(log n)




Chemical Implementation

Chemistry as a X+y-—>y+bh l l ‘
programming y+X—>x+b
language for b+ N ;. b e
population X=X+ X ‘ T T
algorithms! b+y—->y+y
. Worse-case scenario example,
Bistable ' starting with x=y, b=0:
Even when x=y! (stochastically) S
71 BesDE f’/
Fast /
O(log n) convergence time /
Robust to perturbation B | S o
above a threshold, initial majority wins whp 4 \\
o \h 9
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Back to the Cell Cycle

- The AM algorithm has ideal properties for settling a
population into one of two states

- But that is not what the cell cycle uses
- Oris it?




Influence Network Notation

- Catalytic reaction | = 2ls the catalyst
y L XLZ»y

X—y = X+Z—>7Z+Yy

- '‘Double kinase-phosphatase’ motit

middle state

inhibit x ¢ (ensures nonlinearity)
(promote Xx,) ""'“'“‘f_J:__ :

= X ¥ —

[ "'-.T.-".*

promote X "f’”' ' \
(promote xg) ~

Xo X5 state where state where

output output X is promoted X is inhibited

influence node catalytic node
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Step 1. the AM Network

[T

l

—J:l x,,_x]_"’,._x

T

- ... not biochemically plausible

(X, promotes x,)

(Xo promotes x,)




Natural Constraint #1

- Direct autocatalysis is not commonly seen in nature

Xq + Xg—=> Xy T Xp
X9+ X —=>X + X

)BE%(




Step 2: remove auto-catalysis

- Replace autocatalysis

- By mutual (simple) catalysis, introducing intermediate species z and r

- zand r need to 'relax back’ when they are not being promoted:
s and t provide the back pressure for such relaxation

S

|
].:l _r* j (X, promotes z,, promotes x,)
e

X
D (X, promotes r,, promotes x,)

T

t
- ... still not biochemically plausible.

14




Natural Constraint #2

* Xo and X, (usually two states of the same molecule)
are both active catalysts in that network

- That is not commonly seen in nature

— X —
1

l
}‘X VS. ' or
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Step 3: only one active state per species

- Remove the catalytic activity of x,
- By “flipping the z feedback to the other side”

N &— N

(x, promotes z, via s bias,

.|.—* » 1 1 Z, promotes x, via inhibiting x,)
[~ 92 e

1 F 1 (X, promotes r,, promotes x,)

4

- All species now have one active (x,,z,r,) and one inactive (x,,z,,I,) form
- This is ‘biochmically plausible’
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Network Structure

-and that is the cell-cycle switch!

i N @— N
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& algorithm 14

- But did we preserve the AM function through our network transformations?

- Ideally: prove either that the networks are ‘contextually equivalent’ or that the
transformations are ‘correct’

- Practically: compare their ‘typical’ behavior




Convergence Analysis

- Switches as computational systems

N @— N

. 15000 s
Start symmetrical

(Xo=X1=X, etc.)
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Black lines: several stochastic simulation traces
Color: full probability distribution of small-size system

20 0 “t,- 2.0

NEW!
CC appears to converge in log time
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Steady State Analysis

+ Switches as dynamical Systems

3‘fi_| bias - 1 i __
Xy —“'-x_—l E_T zl:lxl
L §9 |17 —T ! ¢ 11
SX SX I I o

0 « SXg— 150 a o < SXp

Black lines: deterministic ODE bifurcation diagrams NEW!
Red lines: noisy stochastic simulations AM shows hysteresis
Color: full probability distribution of small-size system




Fvidence that CC is 'similar’ to AM

- But there was a difference
- The output of CC does not go ‘fully on’ like AM:

i
0
7 4

0.00710

—_
w

x
° =~ N2
by x
sgpe il
TEEs

- Because s continuously inhibits x through z, so that x cannot fully express
- Q: Why didn’t nature do better than that?
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N

ature fixed it!

here is another known feedback loop

+ By which x suppresses s “in retaliation” via the so-called Greatwall loop
- Also, s and t happen to be the same molecule

—t - 0.0025

15000 9
=1 Full activation!
[ \ T 1 4y
R
‘T
le
0

* (As usual, there are many more details in real biological networks; this is one of

the many details people knew about without fully understanding its function)
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More surprisingly

- Made it faster too!

- The extra feedback also speeds up the decision time of the switch,
making it about as good as the ‘optimal’ AM switch:

15000

Conclusion (in our published paper): ' ow

Nature is trying as hard as it can to h cc
implement an AM-class algorithm!
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The Greatwall Kinase
- Our paper appeared:

- Suggesting GW is a better switch than CC,
also in the context of oscillators

- Another paper the same week:

- Showing experimentally that the Greatwall
loop is a necessary component of the switch,
l.e. the not-as-good-as-AM network

has been 'refuted’

SCIENTIFIC 0 ¢
REPg}RTS s

@ The Cell Cycle Switch Computes
Approximate Majority

SURIECT AREAS:

i Lca Cardell’ & Afila CsikdszMogy®*
COMILTATON AL
PICY CH

—e
natire \>————— @
COMMUNICATIONS

ARTICI=

d & Jul 2712 | Aocadted 14 Aug SO Sadkshed 17 Sep 2010
Greatwall kinase and cyclin B-Cdk1 are both critical

constituents of M-phase-promoting factor
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But what about network equivalence?

- Our evidence is empirical

- Although quantitative and covering both kinetic and steady state behavior
- Also, contextual equivalence holds in the context of oscillators (see paper)

- Analytical evidence is harder to obtain

- The proof techniques for the AM algorithm are hard and do not generalize
easily to more complex networks

- Quantitative theories of behavioral equivalence and behavioral approximation,
e.g. in process algebra, are still lacking (although rich qualitative theories exist)

24




Mutual Inhibition

- A new paper suggests that all cellular switches in all phases of the cell
cycle follow (abstractly) a mutual inhibition pattern:

Molerlnljlar mechanisms creating histable switches at cell cycle | n O u n Otat| O n:
transltions

Anael Verduge. P. K. ¥ined, John J. Tyson and Bela Novak
Open Biol. 2113 8, 120178, published 13 March 2013 I I I




New Cell Cycle Network

- A new paper presents a more complete view of the cell cycle switch
N.B. “phosphorylation network dynamics” is the same as our x,-x;-x, motif

Phospharylation network dynamics in the control of

cell cycle transitions .
b In our notation:

', Lillana Krasinska' !, Damien Coudreuss™ and Béla Novdk™!
onpeliier, IOMM, CHRS UME GLO5, Uriversite \Oor Apelier | and | 34200 Moripeller, Trance
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Network Emulation

- For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of

NCC collapse to those of Ml (thanks to David Soloveichik):

l_l_x Xhp - X L | 1
T_l / _T SUZ =S [5 | XI

1_/ .

(18 species on 3 trajectories) (6 species on 3 trajectories)
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Network Emulation

For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of Ml

collapse to those of AM:

(6 species on 3 trajectories)

S, X X

AM

(3 species on 3 trajectories)
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Conclusions

- The cell cycle switch can exactly emulate AM

ey A7l T 1
S I I X emulates: S X emulates: )m
LV i [+
1/ " "
nee Approximate majority
(New) cell cycle switch algorithm

- Nature likes a good algorithm!

29




= Microsoft




In separate work...

- We have a chemical implementation of AM using DNA gates
- l.e., a 'synthetic reimplementation’ of the central cell-cycle switch.

Programmable chemical controllers made from DNA a b
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