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 No survival without computation!
 Finding food
 Avoiding predators

 How do they compute?
 Clearly doing “information processing”
 Based on complex, higher-order interactions
 MAPKKK = MAP Kinase Kinase Kinase =

that which operates on that which operates on
that which operates on protein.

 How ‘sophisticated’ are natural algorithms?

Cells Compute

2

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.



Outline
 Analyzing biomolecular networks
 Try do understand the function of a network
 But also try to understand its structure, and what determines it

 The Cell-Cycle Switches
 Some of the best studied molecular networks
 Important because of their fundamental function (cell division)

and the stability of the network across evolution

 We ask:
 What does the cell cycles switch compute?
 How does it compute it?
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 This network is universal in all Eukaryotes [P. Nurse]
 I.e., the network at the core of cell division is the same from yeast to us
 Not the components of the network, nor the rates

 The function is very well-studied. But why this structure?
 I.e., why this algorithm?

xy

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y
What on earth … ???



How to Build a Good Switch
 What is a “good” switch?
 We need first a bistable system: one that has two distinct and stable states.

I.e., given any initial state the system must settle into one of two states
 The settling must be fast (not get stuck in the middle for too long)

and robust (must not spontaneously switch back)
 Finally, we need to be able to flip the switch by external inputs

 “Population” Switches
 Populations of identical agents (molecules) with the whole population

switching from one state to another as a whole
 Highly concurrent (stochastic)
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A Bad Algorithm
 Direct Competition
 x catalyzes the transformation of y into x
 y catalyzes the transformation of x into y
 when all-x or all-y, it stops

 This system has two end states, but
 Convergence to an end state is slow (a random walk)
 Any perturbation of an end state can start a random

walk to the other end state (hence not really bistable)
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y + x x + x
x + y y + y



A Very Good Algorithm
 Approximate Majority (AM)
 Decide which of two populations is in majority

 A fundamental ‘population protocol’
 Agents in a population start in state x or state y
 A pair of agents is chosen randomly at each step,

they interact (‘collide’) and change state
 The whole population must eventually agree on a

majority value (all-x or all-y) with probability 1
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Third ‘undecided’ state

1) Disagreements cause agents to
become undecided

2) Undecided agents believe any
non-undecided agent they meet



Properties
 With high probability, for n agents
 The total number of interactions before converging is O(n log n)
 fast
 The final outcome is correct if the initial disparity is ω(sqrt(n) log n)
 solution states are robust to perturbations

 Logarithmic time bound in parallel time
 Parallel time is the number of steps divided by the number of agents
 In parallel time the algorithm converges with high probability in O(log n)
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[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]



Chemical Implementation
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x + y y + b
y + x x + b
b + x x + x
b + y y + y

Chemistry as a
programming
language for
population
algorithms!

Worse-case scenario example,
starting with x=y, b=0:Bistable

Even when x=y! (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp



Back to the Cell Cycle
 The AM algorithm has ideal properties for settling a

population into one of two states
 But that is not what the cell cycle uses
 Or is it?
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Influence Network Notation
 Catalytic reaction

 ‘Double kinase-phosphatase’ motif
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x + z z + y
z is the catalyst

influence node catalytic node



Step 1: the AM Network

 ... not biochemically plausible
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(x0 promotes x0)

(x2 promotes x2)



Natural Constraint #1
 Direct autocatalysis is not commonly seen in nature
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x1 + x0 x0 + x0
x1 + x2 x2 + x2



Step 2: remove auto-catalysis
 Replace autocatalysis
 By mutual (simple) catalysis, introducing intermediate species z and r
 z and r need to ‘relax back’ when they are not being promoted:

s and t provide the back pressure for such relaxation

 ... still not biochemically plausible.
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(x0 promotes r0, promotes x0)

(x2 promotes z2, promotes x2)



Natural Constraint #2
 x0 and x2 (usually two states of the same molecule)

are both active catalysts in that network
 That is not commonly seen in nature
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vs. or



 Remove the catalytic activity of x2
 By “flipping the z feedback to the other side”

 All species now have one active (x0,z0,r0) and one inactive (x2,z2,r2) form
 This is ‘biochmically plausible’

Step 3: only one active state per species
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(x0 promotes r0, promotes x0)

(x2 promotes z0 via s bias,
z0 promotes x2 via inhibiting x0)



Network Structure
 … and that is the cell-cycle switch!

 But did we preserve the AM function through our network transformations?
 Ideally: prove either that the networks are ‘contextually equivalent’ or that the

transformations are ‘correct’
 Practically: compare their ‘typical’ behavior 17
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z2 Nobel-prize
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Variation on a
distributed
algorithm



Convergence Analysis
 Switches as computational systems
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Steady State Analysis
 Switches as dynamical systems
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Evidence that CC is ‘similar’ to AM
 But there was a difference
 The output of CC does not go ‘fully on’ like AM:

 Because s continuously inhibits x through z, so that x cannot fully express
 Q: Why didn’t nature do better than that?
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Nature fixed it!
 There is another known feedback loop
 By which x suppresses s “in retaliation” via the so-called Greatwall loop
 Also, s and t happen to be the same molecule

 (As usual, there are many more details in real biological networks; this is one of
the many details people knew about without fully understanding its function)
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More surprisingly
 Made it faster too!
 The extra feedback also speeds up the decision time of the switch,

making it about as good as the ‘optimal’ AM switch:
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Conclusion (in our published paper):
Nature is trying as hard as it can to
implement an AM-class algorithm!



The Greatwall Kinase
 Our paper appeared:
 Suggesting GW is a better switch than CC,

also in the context of oscillators

 Another paper the same week:
 Showing experimentally that the Greatwall

loop is a necessary component of the switch,
i.e. the not-as-good-as-AM network
has been ‘refuted’
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But what about network equivalence?
 Our evidence is empirical
 Although quantitative and covering both kinetic and steady state behavior
 Also, contextual equivalence holds in the context of oscillators (see paper)

 Analytical evidence is harder to obtain
 The proof techniques for the AM algorithm are hard and do not generalize

easily to more complex networks
 Quantitative theories of behavioral equivalence and behavioral approximation,

e.g. in process algebra, are still lacking (although rich qualitative theories exist)
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Mutual Inhibition
 A new paper suggests that all cellular switches in all phases of the cell

cycle follow (abstractly) a mutual inhibition pattern:
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GW

MI

In our notation:

cf.:



New Cell Cycle Network
 A new paper presents a more complete view of the cell cycle switch
 N.B. “phosphorylation network dynamics” is the same as our x0-x1-x2 motif
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NCC

In our notation:



Network Emulation
 For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of
NCC collapse to those ofMI (thanks to David Soloveichik):
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(18 species on 3 trajectories) (6 species on 3 trajectories)

x,r,p ⇢ x
s,u,z ⇢ s

NCC MI



Network Emulation
 For chosen (uniform) initial conditions, the ODEs (and hence trajectories) ofMI

collapse to those of AM:

28

(6 species on 3 trajectories) (3 species on 3 trajectories)

s,x⇢ x

MI AM



Conclusions
 The cell cycle switch can exactly emulate AM

 Nature likes a good algorithm!
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emulates: emulates:

(New) cell cycle switch
Approximate majority

algorithm

NCC

AMMI
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In separate work...
 We have a chemical implementation of AM using DNA gates
 I.e., a ‘synthetic reimplementation’ of the central cell-cycle switch.
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