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 No survival without computation!
 Finding food
 Avoiding predators

 How do they compute?
 Clearly doing “information processing”
 Based on complex, higher-order interactions
 MAPKKK = MAP Kinase Kinase Kinase =

that which operates on that which operates on
that which operates on protein.

 How ‘sophisticated’ are natural algorithms?

Cells Compute
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Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.



Outline
 Analyzing biomolecular networks
 Try do understand the function of a network
 But also try to understand its structure, and what determines it

 The Cell-Cycle Switches
 Some of the best studied molecular networks
 Important because of their fundamental function (cell division)

and the stability of the network across evolution

 We ask:
 What does the cell cycles switch compute?
 How does it compute it?
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 This network is universal in all Eukaryotes [P. Nurse]
 I.e., the network at the core of cell division is the same from yeast to us
 Not the components of the network, nor the rates

 The function is very well-studied. But why this structure?
 I.e., why this algorithm?

xy

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y
What on earth … ???



How to Build a Good Switch
 What is a “good” switch?
 We need first a bistable system: one that has two distinct and stable states.

I.e., given any initial state the system must settle into one of two states
 The settling must be fast (not get stuck in the middle for too long)

and robust (must not spontaneously switch back)
 Finally, we need to be able to flip the switch by external inputs

 “Population” Switches
 Populations of identical agents (molecules) with the whole population

switching from one state to another as a whole
 Highly concurrent (stochastic)
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A Bad Algorithm
 Direct Competition
 x catalyzes the transformation of y into x
 y catalyzes the transformation of x into y
 when all-x or all-y, it stops

 This system has two end states, but
 Convergence to an end state is slow (a random walk)
 Any perturbation of an end state can start a random

walk to the other end state (hence not really bistable)
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y + x x + x
x + y y + y



A Very Good Algorithm
 Approximate Majority (AM)
 Decide which of two populations is in majority

 A fundamental ‘population protocol’
 Agents in a population start in state x or state y
 A pair of agents is chosen randomly at each step,

they interact (‘collide’) and change state
 The whole population must eventually agree on a

majority value (all-x or all-y) with probability 1
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Third ‘undecided’ state

1) Disagreements cause agents to
become undecided

2) Undecided agents believe any
non-undecided agent they meet



Properties
 With high probability, for n agents
 The total number of interactions before converging is O(n log n)
 fast
 The final outcome is correct if the initial disparity is ω(sqrt(n) log n)
 solution states are robust to perturbations

 Logarithmic time bound in parallel time
 Parallel time is the number of steps divided by the number of agents
 In parallel time the algorithm converges with high probability in O(log n)
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[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]



Chemical Implementation
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x + y y + b
y + x x + b
b + x x + x
b + y y + y

Chemistry as a
programming
language for
population
algorithms!

Worse-case scenario example,
starting with x=y, b=0:Bistable

Even when x=y! (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp



Back to the Cell Cycle
 The AM algorithm has ideal properties for settling a

population into one of two states
 But that is not what the cell cycle uses
 Or is it?
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Influence Network Notation
 Catalytic reaction

 ‘Double kinase-phosphatase’ motif
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x + z z + y
z is the catalyst

influence node catalytic node



Step 1: the AM Network

 ... not biochemically plausible
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(x0 promotes x0)

(x2 promotes x2)



Natural Constraint #1
 Direct autocatalysis is not commonly seen in nature
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x1 + x0 x0 + x0
x1 + x2 x2 + x2



Step 2: remove auto-catalysis
 Replace autocatalysis
 By mutual (simple) catalysis, introducing intermediate species z and r
 z and r need to ‘relax back’ when they are not being promoted:

s and t provide the back pressure for such relaxation

 ... still not biochemically plausible.
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(x0 promotes r0, promotes x0)

(x2 promotes z2, promotes x2)



Natural Constraint #2
 x0 and x2 (usually two states of the same molecule)

are both active catalysts in that network
 That is not commonly seen in nature
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vs. or



 Remove the catalytic activity of x2
 By “flipping the z feedback to the other side”

 All species now have one active (x0,z0,r0) and one inactive (x2,z2,r2) form
 This is ‘biochmically plausible’

Step 3: only one active state per species
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(x0 promotes r0, promotes x0)

(x2 promotes z0 via s bias,
z0 promotes x2 via inhibiting x0)



Network Structure
 … and that is the cell-cycle switch!

 But did we preserve the AM function through our network transformations?
 Ideally: prove either that the networks are ‘contextually equivalent’ or that the

transformations are ‘correct’
 Practically: compare their ‘typical’ behavior 17
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Variation on a
distributed
algorithm



Convergence Analysis
 Switches as computational systems
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Steady State Analysis
 Switches as dynamical systems
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Evidence that CC is ‘similar’ to AM
 But there was a difference
 The output of CC does not go ‘fully on’ like AM:

 Because s continuously inhibits x through z, so that x cannot fully express
 Q: Why didn’t nature do better than that?
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Nature fixed it!
 There is another known feedback loop
 By which x suppresses s “in retaliation” via the so-called Greatwall loop
 Also, s and t happen to be the same molecule

 (As usual, there are many more details in real biological networks; this is one of
the many details people knew about without fully understanding its function)
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More surprisingly
 Made it faster too!
 The extra feedback also speeds up the decision time of the switch,

making it about as good as the ‘optimal’ AM switch:
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Conclusion (in our published paper):
Nature is trying as hard as it can to
implement an AM-class algorithm!



The Greatwall Kinase
 Our paper appeared:
 Suggesting GW is a better switch than CC,

also in the context of oscillators

 Another paper the same week:
 Showing experimentally that the Greatwall

loop is a necessary component of the switch,
i.e. the not-as-good-as-AM network
has been ‘refuted’
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But what about network equivalence?
 Our evidence is empirical
 Although quantitative and covering both kinetic and steady state behavior
 Also, contextual equivalence holds in the context of oscillators (see paper)

 Analytical evidence is harder to obtain
 The proof techniques for the AM algorithm are hard and do not generalize

easily to more complex networks
 Quantitative theories of behavioral equivalence and behavioral approximation,

e.g. in process algebra, are still lacking (although rich qualitative theories exist)
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Mutual Inhibition
 A new paper suggests that all cellular switches in all phases of the cell

cycle follow (abstractly) a mutual inhibition pattern:
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GW

MI

In our notation:

cf.:



New Cell Cycle Network
 A new paper presents a more complete view of the cell cycle switch
 N.B. “phosphorylation network dynamics” is the same as our x0-x1-x2 motif
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NCC

In our notation:



Network Emulation
 For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of
NCC collapse to those ofMI (thanks to David Soloveichik):
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(18 species on 3 trajectories) (6 species on 3 trajectories)

x,r,p ⇢ x
s,u,z ⇢ s

NCC MI



Network Emulation
 For chosen (uniform) initial conditions, the ODEs (and hence trajectories) ofMI

collapse to those of AM:

28

(6 species on 3 trajectories) (3 species on 3 trajectories)

s,x⇢ x

MI AM



Conclusions
 The cell cycle switch can exactly emulate AM

 Nature likes a good algorithm!
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emulates: emulates:

(New) cell cycle switch
Approximate majority

algorithm

NCC

AMMI
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In separate work...
 We have a chemical implementation of AM using DNA gates
 I.e., a ‘synthetic reimplementation’ of the central cell-cycle switch.
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